It’s also likely that wireless charging technology will dramatically evolve, both with respect to home wireless chargers as well as the possibility of charging an EV battery even as the vehicle is being driven.
While electric trains have been around for decades, diesel engines remain the most pervasive power source and are ripe for replacement. South Korea already operates electric multiple unit trains, and it intends to phase out all of its diesel passenger trains by 2029. French manufacturer Alstom is running a hydrogen-powered passenger train service in Europe, which it expects to roll out more widely over the next several years. Meanwhile, Canadian Pacific Railway has put eight hydrogen-powered freight locomotives into service to assess their viability.
In aviation, electric airplanes are not yet practical due to the huge on-board weight of batteries. Late in 2020, Airbus announced that hydrogen-fueled propulsion systems would be central to a new generation of zero-emissions commercial aircraft. The project is a flagship of the EU’s COVID-19 stimulus package that aims to green the bloc’s economy. Airbus believes its planes could be ready by 2035, though whether their use becomes commonplace will depend on hydrogen being produced at scale and without a large carbon footprint, challenges in their own right.
Reshaped landscape
The landscape of 2050 will be different beyond simply the further proliferation of wind turbines and solar panels, which have already become prevalent over the years. In cities, more green spaces to lock up CO2 will be widespread.
With homes receiving the majority of their electricity from wind and solar and a greater amount of electricity generation directed at transport, more transmission infrastructure, including pylons and substations, will be needed to carry energy to homes and factories.
Travelers may see tram-style overhead power cables hovering above a truck lane on the highway—the electric motorway. Trucks emit between 15 percent and 18 percent of CO2 emissions and German conglomerate Siemens has been at the forefront of an innovative technology to reduce this.
Siemens’ first “eHighway” was piloted in Sweden, with diesel hybrid vehicles manufactured by Scania adapted to operate with power from an overhead contact line. A similar system was also tested in Los Angeles. The UK government commissioned a study in 2021 to assess the economic and technical potential of a national rollout of this technology, which offers many advantages beyond cutting emissions and improving air quality. It can eliminate the dependency on battery range performance while increasing utilization rates as it would eliminate idle time during charging.
In addition, given that a massive reduction in the amount of carbon dioxide already in the atmosphere will be necessary, direct air capture (DAC) facilities, which extract CO2 directly from the air, are likely to be built on the edge of urban areas. These will look like rows of boxes containing fans humming away.
The IPCC suggests that to keep global warming below 1.5 degrees Celsius, around 730 billion metric tons of CO2 must be taken out of the atmosphere by the end of this century in addition to a significant reduction in emissions. That is equivalent to all the CO2 emitted by the U.S., the UK, and China since 1750.
DAC removes CO2 from the atmosphere by forcing air over a chemical that grabs CO2, then compresses, transfers, and stores it in deep geological formations. Currently, 19 DAC plants are in operation worldwide, capturing 10,000 metric tons of CO2 per year.
The problem is cost. The largest DAC facility operating today, in Iceland and operated by ClimeWorks, a Swiss firm, can remove 4,000 metric tons of CO2 from the air per year and store it in mineral form at a cost of $600 to $800 per metric ton. Scaling up the technology can bring the price down. Canada’s Carbon Engineering believes its much larger plant with planned capacity of one million metric tons per year, scheduled to open in three years’ time in Texas, can operate at a much lower cost, in a range of $90 to $240 per metric ton.
According to Carbon Engineering, DAC technology combined with secure geological storage can deliver permanent and verifiable removal of carbon dioxide from the air, reversing the emissions process, and provide sectors struggling to decarbonize, such as aviation, shipping, and oil and gas, with a potential path to achieve net-zero targets.